(0) Obligation:

Clauses:

average(0, 0, 0).
average(0, s(0), 0).
average(0, s(s(0)), s(0)).
average(s(X), Y, Z) :- average(X, s(Y), Z).
average(X, s(s(s(Y))), s(Z)) :- average(s(X), Y, Z).

Query: average(g,a,g)

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph ICLP10.

(2) Obligation:

Clauses:

averageA(0, 0, 0).
averageA(0, s(0), 0).
averageA(0, s(0), 0).
averageA(0, s(s(0)), s(0)).
averageA(0, s(s(s(T17))), s(0)) :- averageA(0, s(T17), 0).
averageA(s(0), 0, 0).
averageA(s(0), s(0), s(0)).
averageA(s(s(T38)), T41, T40) :- averageA(T38, s(s(T41)), T40).
averageA(s(T54), s(s(T57)), s(T56)) :- averageA(s(T54), T57, T56).
averageA(s(T64), s(s(s(T67))), s(T66)) :- averageA(s(s(T64)), T67, T66).
averageA(T89, s(s(s(T92))), s(T91)) :- averageA(T89, s(T92), T91).
averageA(T99, s(s(s(s(s(s(T102)))))), s(s(T101))) :- averageA(s(s(T99)), T102, T101).

Query: averageA(g,a,g)

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
averageA_in: (b,f,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

averageA_in_gag(0, 0, 0) → averageA_out_gag(0, 0, 0)
averageA_in_gag(0, s(0), 0) → averageA_out_gag(0, s(0), 0)
averageA_in_gag(0, s(s(0)), s(0)) → averageA_out_gag(0, s(s(0)), s(0))
averageA_in_gag(0, s(s(s(T17))), s(0)) → U1_gag(T17, averageA_in_gag(0, s(T17), 0))
averageA_in_gag(s(0), 0, 0) → averageA_out_gag(s(0), 0, 0)
averageA_in_gag(s(0), s(0), s(0)) → averageA_out_gag(s(0), s(0), s(0))
averageA_in_gag(s(s(T38)), T41, T40) → U2_gag(T38, T41, T40, averageA_in_gag(T38, s(s(T41)), T40))
averageA_in_gag(s(T54), s(s(T57)), s(T56)) → U3_gag(T54, T57, T56, averageA_in_gag(s(T54), T57, T56))
averageA_in_gag(s(T64), s(s(s(T67))), s(T66)) → U4_gag(T64, T67, T66, averageA_in_gag(s(s(T64)), T67, T66))
averageA_in_gag(T89, s(s(s(T92))), s(T91)) → U5_gag(T89, T92, T91, averageA_in_gag(T89, s(T92), T91))
averageA_in_gag(T99, s(s(s(s(s(s(T102)))))), s(s(T101))) → U6_gag(T99, T102, T101, averageA_in_gag(s(s(T99)), T102, T101))
U6_gag(T99, T102, T101, averageA_out_gag(s(s(T99)), T102, T101)) → averageA_out_gag(T99, s(s(s(s(s(s(T102)))))), s(s(T101)))
U5_gag(T89, T92, T91, averageA_out_gag(T89, s(T92), T91)) → averageA_out_gag(T89, s(s(s(T92))), s(T91))
U4_gag(T64, T67, T66, averageA_out_gag(s(s(T64)), T67, T66)) → averageA_out_gag(s(T64), s(s(s(T67))), s(T66))
U3_gag(T54, T57, T56, averageA_out_gag(s(T54), T57, T56)) → averageA_out_gag(s(T54), s(s(T57)), s(T56))
U2_gag(T38, T41, T40, averageA_out_gag(T38, s(s(T41)), T40)) → averageA_out_gag(s(s(T38)), T41, T40)
U1_gag(T17, averageA_out_gag(0, s(T17), 0)) → averageA_out_gag(0, s(s(s(T17))), s(0))

The argument filtering Pi contains the following mapping:
averageA_in_gag(x1, x2, x3)  =  averageA_in_gag(x1, x3)
0  =  0
averageA_out_gag(x1, x2, x3)  =  averageA_out_gag(x2)
s(x1)  =  s(x1)
U1_gag(x1, x2)  =  U1_gag(x2)
U2_gag(x1, x2, x3, x4)  =  U2_gag(x4)
U3_gag(x1, x2, x3, x4)  =  U3_gag(x4)
U4_gag(x1, x2, x3, x4)  =  U4_gag(x4)
U5_gag(x1, x2, x3, x4)  =  U5_gag(x4)
U6_gag(x1, x2, x3, x4)  =  U6_gag(x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

averageA_in_gag(0, 0, 0) → averageA_out_gag(0, 0, 0)
averageA_in_gag(0, s(0), 0) → averageA_out_gag(0, s(0), 0)
averageA_in_gag(0, s(s(0)), s(0)) → averageA_out_gag(0, s(s(0)), s(0))
averageA_in_gag(0, s(s(s(T17))), s(0)) → U1_gag(T17, averageA_in_gag(0, s(T17), 0))
averageA_in_gag(s(0), 0, 0) → averageA_out_gag(s(0), 0, 0)
averageA_in_gag(s(0), s(0), s(0)) → averageA_out_gag(s(0), s(0), s(0))
averageA_in_gag(s(s(T38)), T41, T40) → U2_gag(T38, T41, T40, averageA_in_gag(T38, s(s(T41)), T40))
averageA_in_gag(s(T54), s(s(T57)), s(T56)) → U3_gag(T54, T57, T56, averageA_in_gag(s(T54), T57, T56))
averageA_in_gag(s(T64), s(s(s(T67))), s(T66)) → U4_gag(T64, T67, T66, averageA_in_gag(s(s(T64)), T67, T66))
averageA_in_gag(T89, s(s(s(T92))), s(T91)) → U5_gag(T89, T92, T91, averageA_in_gag(T89, s(T92), T91))
averageA_in_gag(T99, s(s(s(s(s(s(T102)))))), s(s(T101))) → U6_gag(T99, T102, T101, averageA_in_gag(s(s(T99)), T102, T101))
U6_gag(T99, T102, T101, averageA_out_gag(s(s(T99)), T102, T101)) → averageA_out_gag(T99, s(s(s(s(s(s(T102)))))), s(s(T101)))
U5_gag(T89, T92, T91, averageA_out_gag(T89, s(T92), T91)) → averageA_out_gag(T89, s(s(s(T92))), s(T91))
U4_gag(T64, T67, T66, averageA_out_gag(s(s(T64)), T67, T66)) → averageA_out_gag(s(T64), s(s(s(T67))), s(T66))
U3_gag(T54, T57, T56, averageA_out_gag(s(T54), T57, T56)) → averageA_out_gag(s(T54), s(s(T57)), s(T56))
U2_gag(T38, T41, T40, averageA_out_gag(T38, s(s(T41)), T40)) → averageA_out_gag(s(s(T38)), T41, T40)
U1_gag(T17, averageA_out_gag(0, s(T17), 0)) → averageA_out_gag(0, s(s(s(T17))), s(0))

The argument filtering Pi contains the following mapping:
averageA_in_gag(x1, x2, x3)  =  averageA_in_gag(x1, x3)
0  =  0
averageA_out_gag(x1, x2, x3)  =  averageA_out_gag(x2)
s(x1)  =  s(x1)
U1_gag(x1, x2)  =  U1_gag(x2)
U2_gag(x1, x2, x3, x4)  =  U2_gag(x4)
U3_gag(x1, x2, x3, x4)  =  U3_gag(x4)
U4_gag(x1, x2, x3, x4)  =  U4_gag(x4)
U5_gag(x1, x2, x3, x4)  =  U5_gag(x4)
U6_gag(x1, x2, x3, x4)  =  U6_gag(x4)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

AVERAGEA_IN_GAG(0, s(s(s(T17))), s(0)) → U1_GAG(T17, averageA_in_gag(0, s(T17), 0))
AVERAGEA_IN_GAG(0, s(s(s(T17))), s(0)) → AVERAGEA_IN_GAG(0, s(T17), 0)
AVERAGEA_IN_GAG(s(s(T38)), T41, T40) → U2_GAG(T38, T41, T40, averageA_in_gag(T38, s(s(T41)), T40))
AVERAGEA_IN_GAG(s(s(T38)), T41, T40) → AVERAGEA_IN_GAG(T38, s(s(T41)), T40)
AVERAGEA_IN_GAG(s(T54), s(s(T57)), s(T56)) → U3_GAG(T54, T57, T56, averageA_in_gag(s(T54), T57, T56))
AVERAGEA_IN_GAG(s(T54), s(s(T57)), s(T56)) → AVERAGEA_IN_GAG(s(T54), T57, T56)
AVERAGEA_IN_GAG(s(T64), s(s(s(T67))), s(T66)) → U4_GAG(T64, T67, T66, averageA_in_gag(s(s(T64)), T67, T66))
AVERAGEA_IN_GAG(s(T64), s(s(s(T67))), s(T66)) → AVERAGEA_IN_GAG(s(s(T64)), T67, T66)
AVERAGEA_IN_GAG(T89, s(s(s(T92))), s(T91)) → U5_GAG(T89, T92, T91, averageA_in_gag(T89, s(T92), T91))
AVERAGEA_IN_GAG(T89, s(s(s(T92))), s(T91)) → AVERAGEA_IN_GAG(T89, s(T92), T91)
AVERAGEA_IN_GAG(T99, s(s(s(s(s(s(T102)))))), s(s(T101))) → U6_GAG(T99, T102, T101, averageA_in_gag(s(s(T99)), T102, T101))
AVERAGEA_IN_GAG(T99, s(s(s(s(s(s(T102)))))), s(s(T101))) → AVERAGEA_IN_GAG(s(s(T99)), T102, T101)

The TRS R consists of the following rules:

averageA_in_gag(0, 0, 0) → averageA_out_gag(0, 0, 0)
averageA_in_gag(0, s(0), 0) → averageA_out_gag(0, s(0), 0)
averageA_in_gag(0, s(s(0)), s(0)) → averageA_out_gag(0, s(s(0)), s(0))
averageA_in_gag(0, s(s(s(T17))), s(0)) → U1_gag(T17, averageA_in_gag(0, s(T17), 0))
averageA_in_gag(s(0), 0, 0) → averageA_out_gag(s(0), 0, 0)
averageA_in_gag(s(0), s(0), s(0)) → averageA_out_gag(s(0), s(0), s(0))
averageA_in_gag(s(s(T38)), T41, T40) → U2_gag(T38, T41, T40, averageA_in_gag(T38, s(s(T41)), T40))
averageA_in_gag(s(T54), s(s(T57)), s(T56)) → U3_gag(T54, T57, T56, averageA_in_gag(s(T54), T57, T56))
averageA_in_gag(s(T64), s(s(s(T67))), s(T66)) → U4_gag(T64, T67, T66, averageA_in_gag(s(s(T64)), T67, T66))
averageA_in_gag(T89, s(s(s(T92))), s(T91)) → U5_gag(T89, T92, T91, averageA_in_gag(T89, s(T92), T91))
averageA_in_gag(T99, s(s(s(s(s(s(T102)))))), s(s(T101))) → U6_gag(T99, T102, T101, averageA_in_gag(s(s(T99)), T102, T101))
U6_gag(T99, T102, T101, averageA_out_gag(s(s(T99)), T102, T101)) → averageA_out_gag(T99, s(s(s(s(s(s(T102)))))), s(s(T101)))
U5_gag(T89, T92, T91, averageA_out_gag(T89, s(T92), T91)) → averageA_out_gag(T89, s(s(s(T92))), s(T91))
U4_gag(T64, T67, T66, averageA_out_gag(s(s(T64)), T67, T66)) → averageA_out_gag(s(T64), s(s(s(T67))), s(T66))
U3_gag(T54, T57, T56, averageA_out_gag(s(T54), T57, T56)) → averageA_out_gag(s(T54), s(s(T57)), s(T56))
U2_gag(T38, T41, T40, averageA_out_gag(T38, s(s(T41)), T40)) → averageA_out_gag(s(s(T38)), T41, T40)
U1_gag(T17, averageA_out_gag(0, s(T17), 0)) → averageA_out_gag(0, s(s(s(T17))), s(0))

The argument filtering Pi contains the following mapping:
averageA_in_gag(x1, x2, x3)  =  averageA_in_gag(x1, x3)
0  =  0
averageA_out_gag(x1, x2, x3)  =  averageA_out_gag(x2)
s(x1)  =  s(x1)
U1_gag(x1, x2)  =  U1_gag(x2)
U2_gag(x1, x2, x3, x4)  =  U2_gag(x4)
U3_gag(x1, x2, x3, x4)  =  U3_gag(x4)
U4_gag(x1, x2, x3, x4)  =  U4_gag(x4)
U5_gag(x1, x2, x3, x4)  =  U5_gag(x4)
U6_gag(x1, x2, x3, x4)  =  U6_gag(x4)
AVERAGEA_IN_GAG(x1, x2, x3)  =  AVERAGEA_IN_GAG(x1, x3)
U1_GAG(x1, x2)  =  U1_GAG(x2)
U2_GAG(x1, x2, x3, x4)  =  U2_GAG(x4)
U3_GAG(x1, x2, x3, x4)  =  U3_GAG(x4)
U4_GAG(x1, x2, x3, x4)  =  U4_GAG(x4)
U5_GAG(x1, x2, x3, x4)  =  U5_GAG(x4)
U6_GAG(x1, x2, x3, x4)  =  U6_GAG(x4)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

AVERAGEA_IN_GAG(0, s(s(s(T17))), s(0)) → U1_GAG(T17, averageA_in_gag(0, s(T17), 0))
AVERAGEA_IN_GAG(0, s(s(s(T17))), s(0)) → AVERAGEA_IN_GAG(0, s(T17), 0)
AVERAGEA_IN_GAG(s(s(T38)), T41, T40) → U2_GAG(T38, T41, T40, averageA_in_gag(T38, s(s(T41)), T40))
AVERAGEA_IN_GAG(s(s(T38)), T41, T40) → AVERAGEA_IN_GAG(T38, s(s(T41)), T40)
AVERAGEA_IN_GAG(s(T54), s(s(T57)), s(T56)) → U3_GAG(T54, T57, T56, averageA_in_gag(s(T54), T57, T56))
AVERAGEA_IN_GAG(s(T54), s(s(T57)), s(T56)) → AVERAGEA_IN_GAG(s(T54), T57, T56)
AVERAGEA_IN_GAG(s(T64), s(s(s(T67))), s(T66)) → U4_GAG(T64, T67, T66, averageA_in_gag(s(s(T64)), T67, T66))
AVERAGEA_IN_GAG(s(T64), s(s(s(T67))), s(T66)) → AVERAGEA_IN_GAG(s(s(T64)), T67, T66)
AVERAGEA_IN_GAG(T89, s(s(s(T92))), s(T91)) → U5_GAG(T89, T92, T91, averageA_in_gag(T89, s(T92), T91))
AVERAGEA_IN_GAG(T89, s(s(s(T92))), s(T91)) → AVERAGEA_IN_GAG(T89, s(T92), T91)
AVERAGEA_IN_GAG(T99, s(s(s(s(s(s(T102)))))), s(s(T101))) → U6_GAG(T99, T102, T101, averageA_in_gag(s(s(T99)), T102, T101))
AVERAGEA_IN_GAG(T99, s(s(s(s(s(s(T102)))))), s(s(T101))) → AVERAGEA_IN_GAG(s(s(T99)), T102, T101)

The TRS R consists of the following rules:

averageA_in_gag(0, 0, 0) → averageA_out_gag(0, 0, 0)
averageA_in_gag(0, s(0), 0) → averageA_out_gag(0, s(0), 0)
averageA_in_gag(0, s(s(0)), s(0)) → averageA_out_gag(0, s(s(0)), s(0))
averageA_in_gag(0, s(s(s(T17))), s(0)) → U1_gag(T17, averageA_in_gag(0, s(T17), 0))
averageA_in_gag(s(0), 0, 0) → averageA_out_gag(s(0), 0, 0)
averageA_in_gag(s(0), s(0), s(0)) → averageA_out_gag(s(0), s(0), s(0))
averageA_in_gag(s(s(T38)), T41, T40) → U2_gag(T38, T41, T40, averageA_in_gag(T38, s(s(T41)), T40))
averageA_in_gag(s(T54), s(s(T57)), s(T56)) → U3_gag(T54, T57, T56, averageA_in_gag(s(T54), T57, T56))
averageA_in_gag(s(T64), s(s(s(T67))), s(T66)) → U4_gag(T64, T67, T66, averageA_in_gag(s(s(T64)), T67, T66))
averageA_in_gag(T89, s(s(s(T92))), s(T91)) → U5_gag(T89, T92, T91, averageA_in_gag(T89, s(T92), T91))
averageA_in_gag(T99, s(s(s(s(s(s(T102)))))), s(s(T101))) → U6_gag(T99, T102, T101, averageA_in_gag(s(s(T99)), T102, T101))
U6_gag(T99, T102, T101, averageA_out_gag(s(s(T99)), T102, T101)) → averageA_out_gag(T99, s(s(s(s(s(s(T102)))))), s(s(T101)))
U5_gag(T89, T92, T91, averageA_out_gag(T89, s(T92), T91)) → averageA_out_gag(T89, s(s(s(T92))), s(T91))
U4_gag(T64, T67, T66, averageA_out_gag(s(s(T64)), T67, T66)) → averageA_out_gag(s(T64), s(s(s(T67))), s(T66))
U3_gag(T54, T57, T56, averageA_out_gag(s(T54), T57, T56)) → averageA_out_gag(s(T54), s(s(T57)), s(T56))
U2_gag(T38, T41, T40, averageA_out_gag(T38, s(s(T41)), T40)) → averageA_out_gag(s(s(T38)), T41, T40)
U1_gag(T17, averageA_out_gag(0, s(T17), 0)) → averageA_out_gag(0, s(s(s(T17))), s(0))

The argument filtering Pi contains the following mapping:
averageA_in_gag(x1, x2, x3)  =  averageA_in_gag(x1, x3)
0  =  0
averageA_out_gag(x1, x2, x3)  =  averageA_out_gag(x2)
s(x1)  =  s(x1)
U1_gag(x1, x2)  =  U1_gag(x2)
U2_gag(x1, x2, x3, x4)  =  U2_gag(x4)
U3_gag(x1, x2, x3, x4)  =  U3_gag(x4)
U4_gag(x1, x2, x3, x4)  =  U4_gag(x4)
U5_gag(x1, x2, x3, x4)  =  U5_gag(x4)
U6_gag(x1, x2, x3, x4)  =  U6_gag(x4)
AVERAGEA_IN_GAG(x1, x2, x3)  =  AVERAGEA_IN_GAG(x1, x3)
U1_GAG(x1, x2)  =  U1_GAG(x2)
U2_GAG(x1, x2, x3, x4)  =  U2_GAG(x4)
U3_GAG(x1, x2, x3, x4)  =  U3_GAG(x4)
U4_GAG(x1, x2, x3, x4)  =  U4_GAG(x4)
U5_GAG(x1, x2, x3, x4)  =  U5_GAG(x4)
U6_GAG(x1, x2, x3, x4)  =  U6_GAG(x4)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 7 less nodes.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

AVERAGEA_IN_GAG(s(T54), s(s(T57)), s(T56)) → AVERAGEA_IN_GAG(s(T54), T57, T56)
AVERAGEA_IN_GAG(s(s(T38)), T41, T40) → AVERAGEA_IN_GAG(T38, s(s(T41)), T40)
AVERAGEA_IN_GAG(s(T64), s(s(s(T67))), s(T66)) → AVERAGEA_IN_GAG(s(s(T64)), T67, T66)
AVERAGEA_IN_GAG(T89, s(s(s(T92))), s(T91)) → AVERAGEA_IN_GAG(T89, s(T92), T91)
AVERAGEA_IN_GAG(T99, s(s(s(s(s(s(T102)))))), s(s(T101))) → AVERAGEA_IN_GAG(s(s(T99)), T102, T101)

The TRS R consists of the following rules:

averageA_in_gag(0, 0, 0) → averageA_out_gag(0, 0, 0)
averageA_in_gag(0, s(0), 0) → averageA_out_gag(0, s(0), 0)
averageA_in_gag(0, s(s(0)), s(0)) → averageA_out_gag(0, s(s(0)), s(0))
averageA_in_gag(0, s(s(s(T17))), s(0)) → U1_gag(T17, averageA_in_gag(0, s(T17), 0))
averageA_in_gag(s(0), 0, 0) → averageA_out_gag(s(0), 0, 0)
averageA_in_gag(s(0), s(0), s(0)) → averageA_out_gag(s(0), s(0), s(0))
averageA_in_gag(s(s(T38)), T41, T40) → U2_gag(T38, T41, T40, averageA_in_gag(T38, s(s(T41)), T40))
averageA_in_gag(s(T54), s(s(T57)), s(T56)) → U3_gag(T54, T57, T56, averageA_in_gag(s(T54), T57, T56))
averageA_in_gag(s(T64), s(s(s(T67))), s(T66)) → U4_gag(T64, T67, T66, averageA_in_gag(s(s(T64)), T67, T66))
averageA_in_gag(T89, s(s(s(T92))), s(T91)) → U5_gag(T89, T92, T91, averageA_in_gag(T89, s(T92), T91))
averageA_in_gag(T99, s(s(s(s(s(s(T102)))))), s(s(T101))) → U6_gag(T99, T102, T101, averageA_in_gag(s(s(T99)), T102, T101))
U6_gag(T99, T102, T101, averageA_out_gag(s(s(T99)), T102, T101)) → averageA_out_gag(T99, s(s(s(s(s(s(T102)))))), s(s(T101)))
U5_gag(T89, T92, T91, averageA_out_gag(T89, s(T92), T91)) → averageA_out_gag(T89, s(s(s(T92))), s(T91))
U4_gag(T64, T67, T66, averageA_out_gag(s(s(T64)), T67, T66)) → averageA_out_gag(s(T64), s(s(s(T67))), s(T66))
U3_gag(T54, T57, T56, averageA_out_gag(s(T54), T57, T56)) → averageA_out_gag(s(T54), s(s(T57)), s(T56))
U2_gag(T38, T41, T40, averageA_out_gag(T38, s(s(T41)), T40)) → averageA_out_gag(s(s(T38)), T41, T40)
U1_gag(T17, averageA_out_gag(0, s(T17), 0)) → averageA_out_gag(0, s(s(s(T17))), s(0))

The argument filtering Pi contains the following mapping:
averageA_in_gag(x1, x2, x3)  =  averageA_in_gag(x1, x3)
0  =  0
averageA_out_gag(x1, x2, x3)  =  averageA_out_gag(x2)
s(x1)  =  s(x1)
U1_gag(x1, x2)  =  U1_gag(x2)
U2_gag(x1, x2, x3, x4)  =  U2_gag(x4)
U3_gag(x1, x2, x3, x4)  =  U3_gag(x4)
U4_gag(x1, x2, x3, x4)  =  U4_gag(x4)
U5_gag(x1, x2, x3, x4)  =  U5_gag(x4)
U6_gag(x1, x2, x3, x4)  =  U6_gag(x4)
AVERAGEA_IN_GAG(x1, x2, x3)  =  AVERAGEA_IN_GAG(x1, x3)

We have to consider all (P,R,Pi)-chains

(9) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(10) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

AVERAGEA_IN_GAG(s(T54), s(s(T57)), s(T56)) → AVERAGEA_IN_GAG(s(T54), T57, T56)
AVERAGEA_IN_GAG(s(s(T38)), T41, T40) → AVERAGEA_IN_GAG(T38, s(s(T41)), T40)
AVERAGEA_IN_GAG(s(T64), s(s(s(T67))), s(T66)) → AVERAGEA_IN_GAG(s(s(T64)), T67, T66)
AVERAGEA_IN_GAG(T89, s(s(s(T92))), s(T91)) → AVERAGEA_IN_GAG(T89, s(T92), T91)
AVERAGEA_IN_GAG(T99, s(s(s(s(s(s(T102)))))), s(s(T101))) → AVERAGEA_IN_GAG(s(s(T99)), T102, T101)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
AVERAGEA_IN_GAG(x1, x2, x3)  =  AVERAGEA_IN_GAG(x1, x3)

We have to consider all (P,R,Pi)-chains

(11) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AVERAGEA_IN_GAG(s(T54), s(T56)) → AVERAGEA_IN_GAG(s(T54), T56)
AVERAGEA_IN_GAG(s(s(T38)), T40) → AVERAGEA_IN_GAG(T38, T40)
AVERAGEA_IN_GAG(s(T64), s(T66)) → AVERAGEA_IN_GAG(s(s(T64)), T66)
AVERAGEA_IN_GAG(T89, s(T91)) → AVERAGEA_IN_GAG(T89, T91)
AVERAGEA_IN_GAG(T99, s(s(T101))) → AVERAGEA_IN_GAG(s(s(T99)), T101)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(13) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • AVERAGEA_IN_GAG(s(T54), s(T56)) → AVERAGEA_IN_GAG(s(T54), T56)
    The graph contains the following edges 1 >= 1, 2 > 2

  • AVERAGEA_IN_GAG(s(s(T38)), T40) → AVERAGEA_IN_GAG(T38, T40)
    The graph contains the following edges 1 > 1, 2 >= 2

  • AVERAGEA_IN_GAG(s(T64), s(T66)) → AVERAGEA_IN_GAG(s(s(T64)), T66)
    The graph contains the following edges 2 > 2

  • AVERAGEA_IN_GAG(T89, s(T91)) → AVERAGEA_IN_GAG(T89, T91)
    The graph contains the following edges 1 >= 1, 2 > 2

  • AVERAGEA_IN_GAG(T99, s(s(T101))) → AVERAGEA_IN_GAG(s(s(T99)), T101)
    The graph contains the following edges 2 > 2

(14) YES